NCCQroup”

My Hash Is My Passport
Understanding VWWeb and Mobile Authentication
ShmooCon - January 17,2016

David Schuetz
Senior Consultant, NCC Group

\f @DarthNull

nccoroup”

Introduction

%
Agenda NCCQrouvp

* Background

* Definitions and Goals

e Commonly Used Authentication Systems
e Other Systems

* Overall Evaluation

* Response BuilderTool

e Conclusion

nccoroup”

Background

%.
Background NCCQroup

* You enter your password in a web application.

* What happens next?

%
Authentication Happens NCCQOroup

* The server decides whether you are you
* How does your password get to the server?

e “That Depends”

* Many different methods in use today
e (Close look at the five most common ones

%
Why do we care? NCCQroup

* There's aright way, and a wrong way
* Explain the systems to three different audiences:

e Testers: need to understand to evaluate the app
e Risk acceptors: need to understand test reports
e Developers: need to implement it properly

* Also, nice for users to get a peek behind the scenes

nccoroup”

Definitions and Goals

%
Definitions and Such NCCQroup

e Avuthentication vs Identification vs Authorization

* Focusis on what the client application does
* Sometimes it actually is Authentication

* Sometimes it's technically Authorization

* We'll just call it all Authentication for now

%
Focus NCCQroup

* Looking at authentication “protocol” or system

\

e Strictly how it's “"supposed to work”
* Assuming client and server are legit
* Not hacked
e Not a phishingsite
* Not a formal security analysis
* Almost all of these have had some issues

e What can an attacker do?

%
Real World Authentication NCCOroup

* Your friend Tim walks up and says “Hi.”
* You look at him, say "Hi,” and begin talking.

e That was easy!!

%
How'd that work? NCCQroup

* Someone simply recognizes you
e (or compares your face to a trusted ID)

* It's hard to spoof that appearance
e Especially if you factor in other cues

* Anyone can watch, without weakening security

: G
Not as easy in “Cyberspace” NCCOrouUP

* Server doesn’t have years of personal experience

* Or brains evolved for facial and behavioral recognition
* Soitrelies on some kind of “factor.”

e Usually a proof of knowledge that only the user has

* Like a password

%
The Crux of the Problem NCCOroup

* How do you securely show that password to the server?

* Inreallife, you wouldn't shout it out... You'd whisper.
e Onthe network, you hide it with encryption

- ¢
It’s a series of tubes NCCQroup

Internet Tim’s Password

e ———

(Client > (Server >

Encrypted TLS connection

(Hopefully, opaque tubes) nccgroup”

Internet Tim’s Password

e ——

(Client > (Server >

ﬁ;

Encrypted TLS connection Evil
Hacker

%
“We’re safe — we use TLS!” NCCQroup

* 2011: Certificate Authority DigiNotar hacked
o Fake certificates issued

e 2011:i0S "Basic Constraints” bug
e Real certs can sign fake certs
e 2012: Trustwave issues globally trusted wildcard cert
* 2014: Heartbleed bug - can expose private keys
e 2015: Superfish Adware
e Self-signed certs on Lenovo laptops can MITM anything
e ?-present: Self-trusted Corporate DLP Proxies

%
Attack Surfaces NCCQroup

°* Login

e When the user first connects to a service
* Session

e Continuous authentication

e While using the application
* Restart (login again)

* "Remember me” functionality

e After application has been unused for a time

%
Attacks - Stealing Credentials NCCOroup

* Network: Disable TLS
* Transit: Server, server network
e Use: Serveror client
e Target application software
* |ntercept keystrokes, search memory
* Storage: Server or client
e Server - steal and crack passwords
e Client - steal locally stored passwords and tokens

* Client - steal improperly cached credentials

: ¢
Session Tokens NCCQroup

* Could send your password with every request...
e ...or could send a special code that only lasts a day

Request Session Token

N

(Client > . GETcatgif | XYZzY314 (Server)

20

: ¢
Token Compromise NCCQOroup

* If an attacker can steal the session token
e Break encryption, attack server, attack client

* They can make requests while pretending to be you

(Server >

GET cat.gif XYZZY314

(Car) (o)

21

%
Make the Tokens Expire Faster NCCQroup

* Using a “"Nonce” - random string - tied to the token
* Ifthe nonce is repeated, server refuses request

Unigque Nonce

(‘client) [__GETcatgif [784Q] XvzZY314 ("server)

(Hacker> $5389 Server
<~ (/N

22

: : S
Nonces and Timestamps and Sigs ~ NCCQroUp
* Servertracks all the used nonces
* Token hasto be cryptographically tied to nonce
* Otherwise hacker could just change the nonce

e Include timestamps - server can discard old nonces

* Still doesn’t cover all attacks, but enough for now

23

nccoroup”

Commonly Used Systems

%
Commonly Used Systems NCCQroup

* Dozens of "mainstream” systems available today
* Only afewincommon use
e Will describe five in detail:
e Password or "Basic”
* Digest
* NTLM
e OAuth1
e OAuth2
* Basic, Digest, and NTLM generally built into browsers

25

nccoroup”

Authorization: Basic

%
Authorization: Basic NCCQroup

* Simply send your userid and password to the server

https://my.server.com/login?userid=tim&password=Enchanter

1 GET /login .
Host: my.server.com
User: tim
GET /login Password: Enchanter
Host: my.server.com

Authorization: Basic dGltOkVuY2hhbnRlcg== {>

https://my.server.com/login?userid=tim&mdSpass=738e8b6f710526ee635cbb7dbf4e8530

27

: G
Assessment: Basic NCCQroup

* Good:

* Simplest method

e (Can use built-in browser form

e Trigger with "WWW-Authenticate:” header

* Oruse HTML or Javascript form within a page
* Bad:

e Perfectly fine... IF you trust TLS

e Use for sessions increases disclosure risk

* (also, don't ever putitinthe URL...even hashed)

28

nccoroup”

Authorization: Digest

%
Authorization: Digest NCCQroup

* More complicated

e Server sends unique parameters

e (lient combines these with the user’s password
e Creates token that's uniquely tied to the nonce
* The password is never sent over the network

* Optionally includes a signature of the request

30

%
Authentication Flow NCCQroup

* Client requests a resource

* Serverreplies "Authenticate with Digest, please”
* Provides realm, nonce, algorithm choice, QOP
e (Client builds response, based on:

e Serverdata, client data, user credentials

31

Computing Response

* Server nonce: random string
* Client nonce: random string
* Client counter: number

e QOP: Quality of Protection

e “auth” or “auth-int”
* Server selects algorithm
* MDg
* All are strings (hashes in hex)

* Joined with "“:”

NCCQroup”

MD5

MDS

(userid IrealmIpassword)

(server nonce)

(client counter)

(client nonce)

Laop

MDS5

[HTTP method | path |

32

%
Server challenge NCCQOroup

WWW-Authenticate: Digest
nonce="1450807853.38:E10B.:
497c0eadca9e962b45e54cd2629399b3",
realm="caerbannog",
algorithm="MDS",
opaque="ADAC33E813CO0CE930F4744CO90EQ02396E",
qop="auth",
stale="false"

33

%
Hashes and Nonces NCCQroup

MD5 ('tim:caerbannog:Enchanter') =
005a400eaf17492454011ddeb50c4a60

MD5('GET:/') =
71998c64aeal37ae77020c49c00£73£fa8

MD5 ('005a400eaf17492454011ddeb50c4a60:
1450807853.38:E10B:
497c0eadca9e962b45e54cd2629399b3:
00000002:9¢c£9d4679b7d83fb:auth:
71998c64aea337ae77020c49c00£73£fa8')

df£529127ed79076430be29b897622ae5

%
Complete Response NCCOroup

Authorization: Digest
username="tim",
nonce="1450807853.38:E10B:
497c0eadca9e962b45e54cd2629399b3",
realm="caerbannog",
algorithm=MD5, qgop=auth,
uri="/",
response="d£529127ed79076430be29b897622ae5",
opaque="ADAC33E813COCE930F4744C90EO02396E",
nc=00000002, cnonce="9c£9d4679b7d83fb"

%
Assessment: Digest NCCQroup

* Not as frequently used for session credentials

* Good:
e Client/sever nonce help prevent replay attacks
e Password not sent over the network
e QOP auth-int detects modification of request
* Bad:
* Relies on MDg(username:realm:password)
e Hash compromise allows immediate account access
e Completed response may be vulnerable to brute-force

* Uncertain support for auth-int
36

nccoroup”

NTLM

NTLM nccgroup”

* Windows NT LAN Manager authentication
e Proprietary, not very well publicly documented

e Binary protocol, very complicated

request

NTLM?

Challenge

Sure!

Response

X
:

38

%
Type 1 - Client Begins NCCQroup

* Serverrequests NTLM
* Client responds with "Type 1” message

HTTP/1.1 401 Unauthorized
WWW-Authenticate: NTLM

Authorization: NTLM
T1RMTVNTUAABAAAAB4IIAAAAAAAAAAAAAAAAAAAAAAA=

4e54 4c4d 5353 5000 0100 0000 0782 0800 NTLMSSP.........
0000 0000 0000 0000 0000 0O0OOO 0000 0000ciiun...

39

%
Type 2 - Server Challenge NCCQroup

e Server responds with challenge

WWW-Authenticate: NTLM [long base64 string]

4eb54 4c4d 5353 5000 0200 0000 1000 1000 NTLMSSP.........

3000 0000 0102 8100'6664 fc33 bb92 a5g;J O..evnen... nd.3...9
0000 0000 0000 0000 ServerChaIIenge @. ..
6d00 7900 7400 6100 7200 6700 6500 7400 m.y.t.a.r.g.e.t.
0200 0000 0100 1400 d00 7900 6300 6f00f m.y.Cc.O.
6d00 7000 7500 7400 6500 7200 0400 2800} m.p.u.t.e.r... (.
6d00 7900 6400 6f00 6d00 6100 6900 6e00} m.y.d.o.m.a.i.n.
2e00 6500 7800 6100 od0O0O 7000 6¢00 6500 ..e.x.a.m.p.l.e.
2e¢00 6300 6f00 6d00 0300 2c00 ©d0OO 7900y ..c.o.m...,.m.y.
6300 6£f00 6d00 7000 7500 7400 6500 7200} c.o.m.p.u.t.e.r.
2e00 6500 7800 6100 od0O0 7000 6c¢c00 6500 e.x.a.m.p.l.e.
200 6300 6£00 6400 0000 Target Block)_0000 CO M.

%
Response - NTLMv1 NCCQroup

e (Calculate NTLM hash of user’s password
e Pad with 5 bytes of zeroes to make 21 bytes
* Convertto 3 DES keys, 64-bits each
e Spread bits out in 7-bit blocks
e Add parity bits in between and at end
e Read back as 8-byte, 64 bit key (x3)
* Encrypt the challenge with each key in turn
* Append all the results into one long response

* Repeat with LM hash

41

%
Building DES Keys NCCQOroup

MD4 (UTF-16 (“Enchanter”)) = 52dac53d34d998ee55b1137d647e93ce

Hash: 5 2 d a c 5
Binary: 0101 0010 1101 1010 1100 O101 ...
Spread: 0101 001x 0110 110x 1011 000x 101
Parity: xxxx xxx0 xxxx xxx]l xxxx xxx0
Keys: 5 2 d 6 b 0

Final keys:
526db0a7d3a76731, ef2a6d2337ea9l1fd, 92e6800101010101

N[R
(Key 1 Challenge || DES
L J J

MD4 assword
(p =) (Key2 |l Challenge
N ey2 || Challenge | DES

(padding

N
Re-arrange Bits (Key 3] [Challenge j DES

42

%
Encrypting Response NCCQroup

Server challenge: 6e64fc33bb9%2a567

keyl = 526db0a7d3a76731, cl = 8£f86b036e38ac5b8
key2 = ef2a6d2337ea9l1fd, c2 = £5913b338af9912e
key3 = 92e6800101010101, c3 = e3037866d94£624d7

NTLM V1 response:
8£f86b036e38ac5b8£f5913b338af9912ee3037866d94£62d7

43

Type 3 Message

 Header, reserved bits, etc.
e Computer’'s Windows domain name
* Username
* Computer DNS name
* Responses
e Response built from NTLM hash
e Response built from LM hash

NCCQroup”

44

Final Type 3 Message

NCCQroup”

4e54 4c4d
6400 0000
4000 0000
4600 0000
7400 6900
7200 6900
6100 6c00

5353 5000 0300 0000 1800 1800 NTLMSSP.........
1800 1800 7c00 0000 0000 0000 d
0600 0600 4000 0000 1e00 1e00 @
0000 0000 0000 0000 0102 0000 F
6d00 670@ 6C00 6100 6d00 6400

8f86 b036 e38a c5b8 f591 3b33

8af9 912e e3®3 7866 d94f 62d7) 8f86 b036 .

d94f 62d7

3aT9 912e e303 7866 .

....... CHTTEY
i.m.g.l.a.m.d.
i.n.g...L.0.cC.
| S T 3
..... xf.0b....0
..... 3. ... XT
.0b.

(highlighted: NTLM-based Response)

45

%
NTLMv2 NCCQroUP
HMAC-MD5

e MDg4(password) = NTLMva hash HMAC-MD5
e (Concatenate:

MD4 || password
* Uppercase username

* Lowercase target domain USERNAME| target

* HMAC using v1 hash as key
e Thisisthe NTLMv2 hash Challenge

* Concatenate challenge, etc.

Header

e HMAC using v2 hash as key P
Imestamp

nonce

target block

46

%
Computing NTLMv2 Hash NCCOroup

NTLMv1l hash: 52dac53d34d998ee55bl1137d647e93ce

Username: tim
Domain target: (null)

Username + Target string: “TIM”
NTLMv2 Hash: ab774da35ccf4d3c9fcl9cbb2829%9a6a8

Challenge: 115f4b6a06e258e0
Target block: (from Type 2 message)

NTLMv2 response:
84aal184c29f75144a225f0cdf732512b

Type 3 Response

nccoroup”

Authorization: NTLM Tl[... long base64 string ...]AAAAAAA
4e54 4c4d 5353 5000 0300 0000 1800 1800 NTLMSSP.........
5c00 0000 ac00 ac00 7400 0000 0000 0000 \....... t.......
4000 0000 0600 0600 4000 0000 1600 1600 @....... @.......
4600 0000 0000 OOOO 0OOOO 0O0OOO 0102 0000 F......eveeeenunn
7400 6900 6d00 5700 4£00 5200 4b00 5300 t.i.m.W.O.R.K.S
5400 4100 5400 4900 4£f00 4e00 al4a 8035 T.A.T.I.O.N..J.5
a%927 2226 _el1d3 6180 e2ea ed4bd 01f0 0Of8 e s
69 Response 1) op 5.
Timestamp 2. .
a678 1365 e3cd 4f9a] 0000 0000 Nonce x.e..O.....
0200 0000 0100 1400 odO0O 7900 6300 6£00 Target Block - V- - ©.
6d00 7000 7500 7400 6500 7200 0400 2800] m.p.u.t.e.r...(.
6d00 7900 6400 6£f00 6d00 6100 6900 6e00] m.y.d.o.m.a.i.n.
2e00 6500 7800 6100 6400 7000 6c00 6500 .e.x.a.m.p.l.e.
2e00 6300 6£f00 6400 0300 2c00 6400 7900} ..c.o.m...,.m.y.
6300 6£00 6d00 7000 7500 7400 6500 7200 c.o.m.p.u.t.e.r.
2e00 6500 7800 6100 6400 7000 6c00 6500 .e.x.a.m.p.l.e.
2e00 6300 6£f00 6400 0000 0000 0000 OOOO .c.om.........

48

%
Assessment: NTLM NCCQroup

* Not as frequently used for session credentials

* Good:
e Reasonably strong, at least in NTLMv2
e Client/sever nonce help prevent replay attacks
e Password not sent over the network
* Bad:
* Complex, vulnerable to implementation bugs

e Hash compromise allows immediate account access

49

nccoroup”

OAuth Version 1

%
OAuth 1 NCCQroup

* Began as "OpenlD for Twitter” in 2007

* Not actually an authentication system

* Brokers a user’s Authorization from a 3rd party system
* |n practice, distinction is sometimes kind of blurred

* Makes extensive use of shared secrets and signatures

51

%
Typical Authorization Flow NCCOroup

e Tim wants to let GrailTweet access his Twitter account
* GrailTweet connects to Twitter: "Give me a request token”
* Userlogsinto Twitter
* Shows request token, authorizes GrailTweet
e Receives activation code
e Provides code to GrailTweet
* GrailTweet shows request token and code to Twitter
* Twitter gives GrailTweet an Access Token
* Now GrailTweet is connected to Tim’s Twitter account

52

%
Auth Flow Diagram NCCQOroup

Auth
Server

Browser>
Consumer

App Authorize App

Get Request Token

Get Access Token

Resource
Server
53

%
Norm Says “"SETEC" NCCOroup

e Client has an application-specific token and secret key
e Assigned to app (or developer) by provider (Twitter)
* Long-lived, often compiled into application

e Authorization Request has specific token and secret key
e Received during authorization setup
e Discarded once client receives Access Token

* User has account-specific token and secret key
* Provided when authorization complete
* Long-lived, should be stored securely on device

54

Computing Signature

* Build request string
e Sort parameters by name
* Build as UTF-8, URL-encoded string
* Prepend:
e Method (GET) in uppercase
e URL (url-encoded)
e Use client secret and "&" as key
e Signature is HMAC-SHA1 of string
e Optionally, RSA-SHA1

NCCQroup”

HMAC-SHA1

(Client Secret)

(METHOD)

(URL)

(Callback Method)

(Client Token)

(Nonce)

(Signature Method)

(Timestamp)

55

%
Example Authorization String NCCQYroup

authorization string = “GET&
https%$3A%2F%2Frabbit.com%$2Floginé&

ocauth callback%3Doob%26

oauth consumer key% 3DQkNDREItQjNDRCOONkNGL %26
oau th nonce%$3DMTZBNDAtMTNBNyOOMEQwWL %2

ocauth _signature method%3DHMAC- SHA1026

cauth timestamp%3D1453030020%26

cauth version%3D1.0”

HMAC-SHA1 (“"OEUyMOMtQUQzNiOOQOM4L&",
authorization string):
XTAWVGGUG]JT1ViJHSEQtPKeRn50%3D

56

http://2frabbit.com

%
Submitting Request NCCOroup

GET /login HTTP/1.1
Host: rabbit.com:443
Authorization: OAuth realm="https://rabbit.com/
login",
cauth callback="oob",
cauth consumer key="QkNDREItQjNDRCOONkKNGL",
oau th_nonce= "MTZBNDAtMTNBNyOOMEQwWL",
cauth signature method="HMAC-SHAl",
cauth timestamp="1453030020",
ocauth version="1.0",
cauth signature=
"XTAWVGGUG]JT1ViJHS5EQtPKeRn50%3D"

57

%
Permission to Ask: Granted NCCOroup

e Client now receives a temporary request token and key
e Client opens a browser using the token (no key):

e https://api.myservice.com/oauth/authenticate?
oauth_token=NDdDOTUtNzAXRCooMDIzL

* User authenticates to service, authorizes app

e Services displays an authorization code to the user

e Client creates a new OAuth request (as above), including:
* oauth_token = (request token)
e oauth_verifier = (authorization code)

* Usesrequest key as part of signing key:

e “"<client key> & <request key>"
58

https://api.myservice.com/oauth/authenticate?oauth_token=NDdDOTUtNzAxRC00MDIzL

%
Authorization is complete NCCOroup

e Client (finally) receives access token and key
e Stores these securely
* Discards request key
* Future requests use the new access token
e oauth_token parameter
e access token key as second half of signing key

59

%
Future Requests are Signed NCCQrouvp

* Request parameters may be added to authorization string
e UTF-8, url-encoded, sorted in with rest of “oauth_" vars

* Request signed:

e Using client (consumer) key and user (access token) key

GET&https$3A%2F32Frabbit.com$2Flookupé&
detail%3D3%26 |

cauth consumer key$%3DQkNDREItQjNDRCOONkNGL%26
oauth_nonce %$3DOUIWRDItMzhGMiO00OMzI4L%26

ocauth signature method%3DHMAC-SHA1%26

cauth timestamp3%3D1452029056%26

ocauth token%3DNDdADOTUtNzAxXRCOOMDIzL%26

h;v rsion%$3D1.0%26
record%3Dcave "

http://2frabbit.com

%
Server Security NCCQOroup

* Compromise of (token, key) pairs grants full access
* No password cracking necessary

* Suggestion:
e Store access token in hashed form
* Application sends token in request
e Server applies hash to token
e Uses hash to look up user, then verify using key
e Account compromise now limited to device only

6

%
Assessment: OAuth 1 NCCQroup

e Good:
e Very strong, with nonces, timestamps, and signatures.
* (Client stores only access tokens
* Once authorized, password never sent
e Tokens may be individually revoked by the end user
e Can provide integrity controls on individual requests.
* Bad:
e Quite complicated, can be difficult to understand.
e Depends on remote service for actual authentication

62

nccoroup”

OAuth Version 2

%
OAuth 2 nccoroup

e Starts as OAuth Web Resources Authorization Protocol
e Published as OAuth 2 in 2012

e Simplified in many ways
* Made more complicated in others

* Not a strictly defined protocol

* More of a framework — different systems may build / expand

64

%
(almost) No More Secrets NCCQroup

e Usersecrets and HMAC-SHAz1 signing from OAuth 1 - Gone!
* Relies on transport and storage security
e TLS to protect exchange of data
* Alsolocal (and server) storage to protect tokens
e Client key and secret remain
e Butsentin clear during part of process

65

%
Typical Authorization Flow NCCOroup

* Client requests authorization from Resource Owner
e Resource owner responds with a Grant

* Client sends Grant to Authorization Server

* Serverresponds with an Access Token

e Client uses Token for future requests

66

%
Flow Varies by Grant Type NCCQroup

e Authorization Code Grant — closest to OAuth 1
e Different Authorizing and Resource servers
* Implicit - typically aimed at browser clients
* Avoids separate grant, returns token immediately
e Resource Owner Password Credentials
e The user’s password is directly exchanged for a token

Client Credentials - similar to Resource Owner
* Authenticates client itself - like a system-level acct
e (Client acts as the resource owner

6/

%
Example - WebApp to GitHub NCCQroup

* Auserisalready logged into a web application

* They want to connect that account to GitHub

e App redirects them to GitHub to get authorization token
* Includes web-app URL for GitHub to send token to

GET https://github.com/login/ocauth/authorize?
client i1id=00zZYMUdsEtté&
scope=repoé&
redirect uri=https://myapp.com/ocauth/codeé&

68

%.
User Authorizes the Application NCCOroup

* The user authenticates to GitHub

* Using GitHub's system, 2FA, etc.
* Authorizes the application to connect to their account
e GitHub connects to the callback URI and provides code

https://myapp.com/ocauth/code&code=KLSgKzktal

69

. <
Application Requests Connection = NCCQroUp

* The browser is already authenticated to the user’s app
* The app sends code back to GitHub
e Thistime, including the app’s client_id and secret

POST https://github.com/login/ocauth/accesstoken

client i1d=00zZYMUdsEtté&

client secret=TKgxlh7KqOWé&

code=KLSgKzktalé&

redirect uri=https://myapp.com/ocauth/newtoken

70

https://myapp.com/oauth/newtoken

%
GitHub Sends Token to App NCCQroup

* GitHub validates the client_id and secret
e Generates an access token and adds to the user’s account
e Connects to the user’s web app, providing token

POST https://myapp.com/ocauth/newtoken

{"access_ token":"e85ecf8fc409714a3c28fbd205£856
7de0521e57", "scope'":'"repo,gist",
"token type'":'"bearer"}

71

%.
Accounts Are Now Linked NCCOroup

* Whenever web app wants to access user’s account...
esimply send request to GitHub
* And include the user’s unique access_token

72

%
Refresh Token NCCQOroup

* Some systems have expiration times on tokens
* Sothey provide a long-lived “refresh token” as well
e Client uses access token for normal requests
* When access token expires
* Use refresh token to get new one
* Need to ensure both tokens are securely stored on client

/3

%
Assessment: OAuth 2 NCCQroup

* Good:
e Generalized framework, open to extension and changes
e Can provide direct authentication
e Essentially, a standard “"universal session token” format
e Bad:
e May limit Interoperability with other systems
* Does notinclude timestamp, nonce, signatures
* Tokens are universally accepted
* Must be carefully protected

74

nccoroup”

Some Other Systems

%
FIDO U2F NCCQroup

e Fast ID Online - Universal Second Factor
* Allows website to directly challenge USB or NFC key

e Builtinto Chrome, others in progress
e Still relies on “traditional” password or other authentication

/76

_ ¢
U2F Overview NCCYroup

e User enters userid and password on remote site
e Site validates password, and sends a challenge to key
* Application ID - tied to remote app
* Handle - tied to user, allows more than one ID on key
* Browser appends data URI origin - helps prevent phishing
* Key locates correct identity, using {application, handle} pair
* Key combines app ID, challenge, and a counter, into message
* Signs message with private key stored on device
* Browser forwards response to server
* Server verifies signature using the account’s public key

77

%
JSON Web Token NCCQroup

* Not a system or protocol, but a format for signed data
e Consists of three parts:

 Header — defines token type

e Claims — the contents of the token

e Signature — a cryptographic signature of the claims

/8

%
JSON Web Token NCCQroup

e Structure for data signed with shared secret

* Header — defines token type

* Claims — the contents of the token

* Signature — a cryptographic signature of the claims

"typll : n JWT" .)
Header { !
"alg": "HS256" } eyJOeXAi0iJKV1QiLCJhbGciOiJIUZzI1INiJO
Claims |{"user": "tim", eyJ1c2VyI joidGltIiwiaXNfd216YXJkI jpOc
"is_wizard": true} nV1fQ==
Signature HMAC-SHA256('secret ', IV1iVUihAm1B7Z21X2xk8FaMM1avQNPBbz7y33
'<header>y .<claims> ') vSItMg
Token eyJOeXAi0iJKV1QiLCJhbGciOiJIUZzIINiJ9. . eyJ1c2VyI joidGltIiwiaXNfd2
16YXJKI jp@cnV1 £fQ==.IV1iVUihAm1B7ZI1X2xk8FaMM1avQNPBbz7y33vSItMg=

OpenlID Nccgroup”

e Distributed Authentication / Identity system
* Essentially, user has an account associated with some server
* Then can use that account to sign into multiple services
* Was vaguely popular for a while, but not as much so today
* Most recent version published in 2014
* OpenlD Connect
e Layered atop OAuth 2 framework

80

%
CRAM-MD5 NCCQroup

e Challenge-Response Authentication Method, with MDg
e Frequently seen with email systems (SMTP, POP, IMAP)
* Server sends challenge string
* Client responds with HMAC-MDs5(password, challenge)
e Severalissues:

e Server may require a plaintext copy of password

* Asniffed transaction can be brute-forced

* Attacker may respond with known challenge

* Find response in list of pre-computed passwords

e System is now basically deprecated

8

%
X.509 and Public / Private Keys NCCOroup

* Benefits:
e Very strong (library bugs and CA attacks notwithstanding)
* Provides additional encryption and authentication
* Drawbacks:
e Need to retain DB of large public keys
e Client needs to securely store and manage private key

* Need to authenticate new devices before key exchange

e Rarely seen, except as additional device-binding feature

82

nccoroup”

Capability Review

Common Elements

System

NCCQroup”

Timestamp PKI Integrity

Password
Digest
NTLM

OAuth |

OAuth 2

Password Signature Nonce
yes
yes yes yes
yes yes yes
n/a yes yes

optional

optional optional
yes
yes optional yes

84

%
Strengths NCCQroup

* Basic: Simplicity

* Digest: Resistance to replay, optional request integrity
e NTLM: Resistance to replay

e OAuth 1: Replay, request integrity, revocable tokens

* OAuth 2: Simplicity, revocable tokens

85

%
Weaknesses NCCQroup

e Basic: Password sent over wire.

* Digest: Potential brute force attacks, server-side storage
questions, support for non-MDg and auth-int, hash use

* NTLM: Complex, binary. Issues with hash, esp. NTLMva.
Not often used for sessions. Hash use.

 OAuth 1: Complicated. Can't do direct authentication.
* OAuth 2: No replay or integrity protection.

86

%
Security-Relevant Features NCCQroup

Attribute Password Digest NTLM OAuth | OAuth 2

Login sends
password

Client needs to
store password

Password sent
during session

Unlimited session
tokens

One-time session
tokens

Request integrity
protections

%
My Recommendation? NCCQroup

* Logins: None are ideal
* Passwords may expose credentials on wire
* Digest requires weak server-side storage
e NTLM and Digest allow use of un-cracked hash

* Sessions: OAuth 1
* Very strong
e Resistance to replays and request tampering

* Credentials can be revoked without resetting
password

88

nccoroup”

Other Considerations

%
Other Considerations NCCQroup

* Server performance
e May be impacted by too many logins w/too strong hash
* But how big a percentage of load is that, really?

e Future sever flexibility
e Migrating to different hashes, different systems

* (lient technical capabilities

* Security of device token storage

* 66% of iOS apps | surveyed stored tokens insecurely
e OAuthisn't embedded in browsers
e Do NOT try to implement in JavaScript

90

%
Other Considerations NCCQroup

* Password Reset

e Still the weakest link

* Compromise one email account, get everything?

* SMS not necessarily better

e Attackers have chained one recovery to another...
* Onboarding

* Very narrow window for attacks

e Butinsome circumstances may be a viable target

91

nccoroup”

Response Builder

%
Testing Authentication NCCQrouvp

* Need to understand authentication when testing apps
* Common systems are usually easy to recognize
* How to test custom (or customized) systems?

* Need to understand system to assess risk
e Replicating responses proves (some) understanding

* Much custom coding required each time

e Building a simple tool to help

93

%
Shortcuts NCCQroup

* Simplify testing of known and custom systems

e Will still require some coding
* Not turn-key, GUI, fill-in-the-blanks and shoot

* Helpsto demonstrate results using real data

* Extend and modify in response to need

* Not ready today (SORRY!)
e (Can show you what I'm working towards

94

%
Common Systems NCCOroup

% build response --oauthl
Enter the parameters:
Callback? oob
Consumer Key? QKNDREItQjNDRCOONKNGL
Consumer Secret? OEUyMOMtQUQzNi(O0QOM4L
Nonce? MTZBNDAtMTNBNyOOMEQwL
Signature Method? HMAC-SHA1
Timestamp? 1453030020
URL? https://rabbit.com/login
Version? 1.0

Signature: xTAwVGGUGJjT1ViJHS5EQtPKeRn50%3D

95

%
Custom Systems NCCOrouUp

prompt userid “Userid”

prompt password “Password”

prompt realm “Realm”

compute msgl join(%“:”, userid, password, realm)
compute hal md5 (msgl)

prompt sn “Server Nonce”

prompt cn “Client Nonce”

prompt nc “"Nonce Counter”

prompt qop “QOP”

prompt method “Method (GET)”

prompt path “Path”

compute msg2 join(“:”, method, path)
compute ha2 md5 (msg2)

compute msg3 join(“:”,hal,sn,nc,cn,gop,ha2)
compute result md5 (msg2)

; c
Possible Enhancements NCCQroup

* Full-out client app
e Can connect to a remote server
* Prompts user for input (userid, password)
* Makes computation, displaying intermediate results
e Sends result to server
e Possible fuzzing of parameters
* Serverapp
e Similar functionality, but pretending to be a server
e see also httpbin.org

97

nccoroup”

Conclusion

: c
Conclusions NCCQroup

* Many different methods for authenticating applications

* Only about five in very common use
* Basic, Digest, NTLM, OAuth 1, and OAuth 2
e All'have strengths, all have weaknesses

* The strongest (OAuth 1) largely derided as “too hard”
e The recommended alternative (OAuth 2) is very weak

99

%
Hope For The Future NCCYroupP

* Improvements to browsers would be helpful
e Improve initial login security
* Integrate OAuth 1 or similar system
e Direct JavaScript support and interfaces

* New developments are exciting
e FIDO U2F
e Emphasis on two-factor and two-step systems

* Alternative authentication systems (Digits)

100

%
References NCCQroup

* Slides will be available online
* White paper
e Additional detail and better explanations
e Extensive references
* Test and demonstration tool
* Available once it’s finished
* Available at NCC and on my blog
e https://www.nccgroup.trust/us/our-research/
* https://darthnull.org/publications

101

nccoroup”

Questions

102

NCCQroup”

* David Schuetz
e Senior Security Consultant at NCC Group

* david.schuetz@nccgroup.trust
e @DarthNull

Locations

North America

Atlanta
Austin
Chicago
New York
San Francisco
Seattle
Sunnyvale

Europe
Manchester - Head Office

Amsterdam
Basingstoke
Cambridge
Copenhagen
Cheltenham
Edinburgh
Glasgow

| eathered

L eeds
London
Luxembourg
Malmo
Milton Keynes
Munich
Vilnius
Wetherby
Zurich

%

NCCQroup

Australia
Sydney

|04

