
My	Hash	Is	My	Passport
Understanding Web and Mobile Authentication

David Schuetz
Senior Consultant, NCC Group

@DarthNull

ShmooCon - January 17, 2016

Introduction

2

• Background	

• Definitions	and	Goals	

• Commonly	Used	Authentication	Systems	

• Other	Systems	

• Overall	Evaluation	

• Response	Builder	Tool	

• Conclusion

3

Agenda

Background

4

• You	enter	your	password	in	a	web	application.	

• What	happens	next?

5

Background

• The	server	decides	whether	you	are	you	

• How	does	your	password	get	to	the	server?	

• “That	Depends”	

• Many	different	methods	in	use	today	

• Close	look	at	the	five	most	common	ones

6

Authentication	Happens

• There’s	a	right	way,	and	a	wrong	way	

• Explain	the	systems	to	three	different	audiences:	
• Testers:	need	to	understand	to	evaluate	the	app	

• Risk	acceptors:	need	to	understand	test	reports	

• Developers:	need	to	implement	it	properly	

• Also,	nice	for	users	to	get	a	peek	behind	the	scenes

7

Why	do	we	care?

Definitions	and	Goals

8

• Authentication	vs	Identification	vs	Authorization	

• Focus	is	on	what	the	client	application	does	
• Sometimes	it	actually	is	Authentication	

• Sometimes	it’s	technically	Authorization	

• We’ll	just	call	it	all	Authentication	for	now

9

Definitions	and	Such

• Looking	at	authentication	“protocol”	or	system	

• Strictly	how	it’s	“supposed	to	work”	

• Assuming	client	and	server	are	legit	
• Not	hacked	

• Not	a	phishing	site	

• Not	a	formal	security	analysis	
• Almost	all	of	these	have	had	some	issues	

• What	can	an	attacker	do?

10

Focus

• Your	friend	Tim	walks	up	and	says	“Hi.”	

• You	look	at	him,	say	“Hi,”	and	begin	talking.	

• That	was	easy!!

11

Real	World	Authentication

• Someone	simply	recognizes	you		
• (or	compares	your	face	to	a	trusted	ID)	

• It’s	hard	to	spoof	that	appearance	
• Especially	if	you	factor	in	other	cues	

• Anyone	can	watch,	without	weakening	security

12

How’d	that	work?

• Server	doesn’t	have	years	of	personal	experience	

• Or	brains	evolved	for	facial	and	behavioral	recognition	

• So	it	relies	on	some	kind	of	“factor.”	

• Usually	a	proof	of	knowledge	that	only	the	user	has	

• Like	a	password

13

Not	as	easy	in	“Cyberspace”

• How	do	you	securely	show	that	password	to	the	server?	

• In	real	life,	you	wouldn’t	shout	it	out…	You’d	whisper.	

• On	the	network,	you	hide	it	with	encryption

14

The	Crux	of	the	Problem

15

It’s	a	series	of	tubes

“Enchanter”Client Server

Internet

Encrypted TLS connection

Tim’s Password

16

(Hopefully,	opaque	tubes)

“Enchanter”Client Server

Internet

Encrypted TLS connection

Tim’s Password

Evil
Hacker

• 2011:	Certificate	Authority	DigiNotar	hacked	
• Fake	certificates	issued	

• 2011:	iOS	“Basic	Constraints”	bug	
• Real	certs	can	sign	fake	certs	

• 2012:	Trustwave	issues	globally	trusted	wildcard	cert	

• 2014:	Heartbleed	bug	-	can	expose	private	keys	

• 2015:	Superfish	Adware	
• Self-signed	certs	on	Lenovo	laptops	can	MITM	anything	

• ?	-	present:	Self-trusted	Corporate	DLP	Proxies

17

“We’re	safe	—	we	use	TLS!”

• Login	
• When	the	user	first	connects	to	a	service	

• Session	
• Continuous	authentication	

• While	using	the	application	

• Restart	(login	again)	
• “Remember	me”	functionality	

• After	application	has	been	unused	for	a	time	

18

Attack	Surfaces

• Network:	Disable	TLS	

• Transit:	Server,		server	network	

• Use:	Server	or	client	

• Target	application	software		

• Intercept	keystrokes,	search	memory	

• Storage:	Server	or	client	

• Server	-	steal	and	crack	passwords	

• Client	-	steal	locally	stored	passwords	and	tokens	

• Client	-	steal	improperly	cached	credentials

19

Attacks	-	Stealing	Credentials

• Could	send	your	password	with	every	request…	

• …or	could	send	a	special	code	that	only	lasts	a	day

20

Session	Tokens

XYZZY314

Session Token

GET cat.gif

Request

Client Server

• If	an	attacker	can	steal	the	session	token	
• Break	encryption,	attack	server,	attack	client	

• They	can	make	requests	while	pretending	to	be	you

21

Token	Compromise

XYZZY314GET cat.gif

XYZZY314XFER $$$$$

Client Server

Hacker Server

• Using	a	“Nonce”	-	random	string	-	tied	to	the	token	

• If	the	nonce	is	repeated,	server	refuses	request

22

Make	the	Tokens	Expire	Faster

XYZZY314GET cat.gif

XYZZY314XFER $$$$$

784Q

784Q

Unique Nonce

“BZZZT!”

Client Server

Hacker Server

!

• Server	tracks	all	the	used	nonces	

• Token	has	to	be	cryptographically	tied	to	nonce	

• Otherwise	hacker	could	just	change	the	nonce	

• Include	timestamps	-	server	can	discard	old	nonces	

• Still	doesn’t	cover	all	attacks,	but	enough	for	now

23

Nonces	and	Timestamps	and	Sigs

Commonly	Used	Systems

24

• Dozens	of	“mainstream”	systems	available	today	

• Only	a	few	in	common	use	

• Will	describe	five	in	detail:	

• Password	or	“Basic”	

• Digest	

• NTLM	

• OAuth	1	

• OAuth	2	

• Basic,	Digest,	and	NTLM	generally	built	into	browsers

25

Commonly	Used	Systems

Authorization:	Basic

26

• Simply	send	your	userid	and	password	to	the	server

27

Authorization:	Basic

• Good:	

• Simplest	method	

• Can	use	built-in	browser	form	

• Trigger	with	“WWW-Authenticate:”	header	

• Or	use	HTML	or	Javascript	form	within	a	page	

• Bad:	

• Perfectly	fine…	IF	you	trust	TLS	

• Use	for	sessions	increases	disclosure	risk	

• (also,	don’t	ever	put	it	in	the	URL…even	hashed)

28

Assessment:	Basic

Authorization:	Digest

29

• More	complicated	

• Server	sends	unique	parameters	

• Client	combines	these	with	the	user’s	password	

• Creates	token	that’s	uniquely	tied	to	the	nonce	

• The	password	is	never	sent	over	the	network	

• Optionally	includes	a	signature	of	the	request

30

Authorization:	Digest

• Client	requests	a	resource	

• Server	replies	“Authenticate	with	Digest,	please”	
• Provides	realm,	nonce,	algorithm	choice,	QOP	

• Client	builds	response,	based	on:	
• Server	data,	client	data,	user	credentials

31

Authentication	Flow

datadigest settings

request

requestdata signature

• Server	nonce:	random	string	

• Client	nonce:	random	string	

• Client	counter:	number	

• QOP:	Quality	of	Protection	
• “auth”	or	“auth-int”	

• Server	selects	algorithm	
• MD5	

• All	are	strings	(hashes	in	hex)	

• Joined	with	“:”

32

Computing	Response

server nonce

client counter

client nonce

qop

realmuserid password

MD5

pathHTTP method

MD5

MD5

33

Server	challenge

WWW-Authenticate: Digest
nonce=“1450807853.38:E10B:
497c0eadca9e962b45e54cd2629399b3",

realm="caerbannog",
algorithm="MD5",

opaque="ADAC33E813C0CE930F4744C90E02396E",
qop="auth",
stale="false"

34

Hashes	and	Nonces

MD5('tim:caerbannog:Enchanter') =
005a400eaf17492454011ddeb50c4a60

MD5('GET:/') =
71998c64aea37ae77020c49c00f73fa8

MD5(‘005a400eaf17492454011ddeb50c4a60:
1450807853.38:E10B:
497c0eadca9e962b45e54cd2629399b3:
00000002:9cf9d4679b7d83fb:auth:
71998c64aea37ae77020c49c00f73fa8')
=
df529127ed79076430be29b897622ae5

35

Complete	Response

Authorization: Digest
 username="tim",
nonce=“1450807853.38:E10B:
497c0eadca9e962b45e54cd2629399b3",
realm=“caerbannog",
algorithm=MD5, qop=auth,
uri="/",
response="df529127ed79076430be29b897622ae5”,
opaque="ADAC33E813C0CE930F4744C90E02396E",
nc=00000002, cnonce="9cf9d4679b7d83fb"

• Not	as	frequently	used	for	session	credentials	

• Good:	

• Client	/	sever	nonce	help	prevent	replay	attacks	

• Password	not	sent	over	the	network	

• QOP	auth-int	detects	modification	of	request	

• Bad:	

• Relies	on	MD5(username:realm:password)	

• Hash	compromise	allows	immediate	account	access	

• Completed	response	may	be	vulnerable	to	brute-force		

• Uncertain	support	for	auth-int
36

Assessment:	Digest

NTLM

37

• Windows	NT	LAN	Manager	authentication	

• Proprietary,	not	very	well	publicly	documented	

• Binary	protocol,	very	complicated

38

NTLM

NTLM?

request

Sure!

Challenge

Response

• Server	requests	NTLM	

• Client	responds	with	“Type	1”	message

39

Type	1	-	Client	Begins

HTTP/1.1 401 Unauthorized
WWW-Authenticate: NTLM

Authorization: NTLM
TlRMTVNTUAABAAAAB4IIAAAAAAAAAAAAAAAAAAAAAAA=

4e54 4c4d 5353 5000 0100 0000 0782 0800 NTLMSSP.........
0000 0000 0000 0000 0000 0000 0000 0000

• Server	responds	with	challenge

40

Type	2	-	Server	Challenge

WWW-Authenticate: NTLM [long base64 string]

4e54 4c4d 5353 5000 0200 0000 1000 1000 NTLMSSP.........
3000 0000 0102 8100 6e64 fc33 bb92 a567 0.......nd.3...g
0000 0000 0000 0000 8000 8000 4000 0000 @...
6d00 7900 7400 6100 7200 6700 6500 7400 m.y.t.a.r.g.e.t.
0200 0000 0100 1400 6d00 7900 6300 6f00 m.y.c.o.
6d00 7000 7500 7400 6500 7200 0400 2800 m.p.u.t.e.r...(.
6d00 7900 6400 6f00 6d00 6100 6900 6e00 m.y.d.o.m.a.i.n.
2e00 6500 7800 6100 6d00 7000 6c00 6500 ..e.x.a.m.p.l.e.
2e00 6300 6f00 6d00 0300 2c00 6d00 7900 ..c.o.m...,.m.y.
6300 6f00 6d00 7000 7500 7400 6500 7200 c.o.m.p.u.t.e.r.
2e00 6500 7800 6100 6d00 7000 6c00 6500 ..e.x.a.m.p.l.e.
2e00 6300 6f00 6d00 0000 0000 0000 0000 ..c.o.m.........

Server Challenge

Target Block

• Calculate	NTLM	hash	of	user’s	password	

• Pad	with	5	bytes	of	zeroes	to	make	21	bytes	

• Convert	to	3	DES	keys,	64-bits	each	

• Spread	bits	out	in	7-bit	blocks	

• Add	parity	bits	in	between	and	at	end	

• Read	back	as	8-byte,	64	bit	key	(x3)	

• Encrypt	the	challenge	with	each	key	in	turn	

• Append	all	the	results	into	one	long	response	

• Repeat	with	LM	hash

41

Response	-	NTLMv1

42

Building	DES	Keys
MD4(UTF-16(“Enchanter”)) = 52dac53d34d998ee55b1137d647e93ce

Hash: 5 2 d a c 5
Binary: 0101 0010 1101 1010 1100 0101 ...
Spread: 0101 001x 0110 110x 1011 000x 101 ...
Parity: xxxx xxx0 xxxx xxx1 xxxx xxx0
Keys: 5 2 d 6 b 0

Final keys:
526db0a7d3a76731, ef2a6d2337ea91fd, 92e6800101010101

password

padding

MD4

Re-arrange Bits

Key 1 Challenge DES

DESKey 2 Challenge

DESKey 3 Challenge

43

Encrypting	Response

Server challenge: 6e64fc33bb92a567

key1 = 526db0a7d3a76731, c1 = 8f86b036e38ac5b8
key2 = ef2a6d2337ea91fd, c2 = f5913b338af9912e
key3 = 92e6800101010101, c3 = e3037866d94f62d7

NTLM V1 response:
8f86b036e38ac5b8f5913b338af9912ee3037866d94f62d7

• Header,	reserved	bits,	etc.	

• Computer’s	Windows	domain	name	

• User	name	

• Computer	DNS	name	

• Responses		

• Response	built	from	NTLM	hash	

• Response	built	from	LM	hash

44

Type	3	Message

45

Final	Type	3	Message

4e54 4c4d 5353 5000 0300 0000 1800 1800 NTLMSSP.........
6400 0000 1800 1800 7c00 0000 0000 0000 d.......|.......
4000 0000 0600 0600 4000 0000 1e00 1e00 @.......@.......
4600 0000 0000 0000 0000 0000 0102 0000 F...............
7400 6900 6d00 6700 6c00 6100 6d00 6400 t.i.m.g.l.a.m.d.
7200 6900 6e00 6700 2e00 6c00 6f00 6300 r.i.n.g...l.o.c.
6100 6c00 8f86 b036 e38a c5b8 f591 3b33 a.l....6......;3
8af9 912e e303 7866 d94f 62d7 8f86 b036 xf.Ob....6
e38a c5b8 f591 3b33 8af9 912e e303 7866 ;3......xf
d94f 62d7 .Ob.

(highlighted: NTLM-based Response)

• MD4(password)	=	NTLMv1	hash	

• Concatenate:	

• Uppercase	username	

• Lowercase	target	domain	

• HMAC	using	v1	hash	as	key	

• This	is	the	NTLMv2	hash	

• Concatenate	challenge,	etc.	

• HMAC	using	v2	hash	as	key

46

NTLMv2

passwordMD4

USERNAME target

HMAC-MD5

Header

timestamp

nonce

target block

Challenge

HMAC-MD5

47

Computing	NTLMv2	Hash	

NTLMv1 hash: 52dac53d34d998ee55b1137d647e93ce

Username: tim
Domain target: (null)

Username + Target string: “TIM”

NTLMv2 Hash: ab774da35ccf4d3c9fc19cbb2829a6a8

Challenge: 115f4b6a06e258e0
Target block: (from Type 2 message)

NTLMv2 response:
84aa184c29f75144a225f0cdf732512b

48

Type	3	Response
Authorization: NTLM Tl[... long base64 string ...]AAAAAAA

4e54 4c4d 5353 5000 0300 0000 1800 1800 NTLMSSP.........
5c00 0000 ac00 ac00 7400 0000 0000 0000 \.......t.......
4000 0000 0600 0600 4000 0000 1600 1600 @.......@.......
4600 0000 0000 0000 0000 0000 0102 0000 F...............
7400 6900 6d00 5700 4f00 5200 4b00 5300 t.i.m.W.O.R.K.S.
5400 4100 5400 4900 4f00 4e00 a14a 8035 T.A.T.I.O.N..J.5
a927 2226 e7d3 6180 e2ea e4bd 01f0 0f8c .'"&..a.........
f697 5573 84aa 184c 29f7 5144 a225 f0cd ..Us...L).QD.%..
f732 512b 0101 0000 0000 0000 8032 d3ca .2Q+.........2..
4843 d101 a678 1365 e3cd 4f9a 0000 0000 HC...x.e..O.....
0200 0000 0100 1400 6d00 7900 6300 6f00 m.y.c.o.
6d00 7000 7500 7400 6500 7200 0400 2800 m.p.u.t.e.r...(.
6d00 7900 6400 6f00 6d00 6100 6900 6e00 m.y.d.o.m.a.i.n.
2e00 6500 7800 6100 6d00 7000 6c00 6500 ..e.x.a.m.p.l.e.
2e00 6300 6f00 6d00 0300 2c00 6d00 7900 ..c.o.m...,.m.y.
6300 6f00 6d00 7000 7500 7400 6500 7200 c.o.m.p.u.t.e.r.
2e00 6500 7800 6100 6d00 7000 6c00 6500 ..e.x.a.m.p.l.e.
2e00 6300 6f00 6d00 0000 0000 0000 0000 ..c.o.m.........

Response
Timestamp
Nonce
Target Block

• Not	as	frequently	used	for	session	credentials	

• Good:	

• Reasonably	strong,	at	least	in	NTLMv2	

• Client	/	sever	nonce	help	prevent	replay	attacks	

• Password	not	sent	over	the	network	

• Bad:	

• Complex,	vulnerable	to	implementation	bugs	

• Hash	compromise	allows	immediate	account	access

49

Assessment:	NTLM

OAuth	Version	1

50

• Began	as	“OpenID	for	Twitter”	in	2007	

• Not	actually	an	authentication	system	

• Brokers	a	user’s	Authorization	from	a	3rd	party	system	

• In	practice,	distinction	is	sometimes	kind	of	blurred	

• Makes	extensive	use	of	shared	secrets	and	signatures

51

OAuth	1

• Tim	wants	to	let	GrailTweet	access	his	Twitter	account	

• GrailTweet	connects	to	Twitter:	“Give	me	a	request	token”	

• User	logs	in	to	Twitter	

• Shows	request	token,	authorizes	GrailTweet	

• Receives	activation	code	

• Provides	code	to	GrailTweet	

• GrailTweet	shows	request	token	and	code	to	Twitter	

• Twitter	gives	GrailTweet	an	Access	Token	

• Now	GrailTweet	is	connected	to	Tim’s	Twitter	account

52

Typical	Authorization	Flow

53

Auth	Flow	Diagram

Consumer
App

Auth
Server

Browser

Resource
Server

Get Request Token

Authorize App

Get Access Token

• Client	has	an	application-specific	token	and	secret	key	

• Assigned	to	app	(or	developer)	by	provider	(Twitter)	

• Long-lived,	often	compiled	into	application	

• Authorization	Request	has	specific	token	and	secret	key	

• Received	during	authorization	setup	

• Discarded	once	client	receives	Access	Token	

• User	has	account-specific	token	and	secret	key	

• Provided	when	authorization	complete	

• Long-lived,	should	be	stored	securely	on	device

54

Norm	Says	“SETEC”

• Build	request	string	
• Sort	parameters	by	name	

• Build	as	UTF-8,	URL-encoded	string	

• Prepend:	
• Method	(GET)	in	uppercase	

• URL	(url-encoded)	

• Use	client	secret	and	“&”	as	key	

• Signature	is	HMAC-SHA1	of	string	
• Optionally,	RSA-SHA1

55

Computing	Signature

URL

Client Token

Nonce

Signature Method

METHOD

HMAC-SHA1

Timestamp

Client Secret

Callback Method

56

Example	Authorization	String

authorization_string = “GET&
https%3A%2F%2Frabbit.com%2Flogin&
oauth_callback%3Doob%26
oauth_consumer_key%3DQkNDREItQjNDRC00NkNGL%26
oauth_nonce%3DMTZBNDAtMTNBNy00MEQwL%26
oauth_signature_method%3DHMAC-SHA1%26
oauth_timestamp%3D1453030020%26
oauth_version%3D1.0”

HMAC-SHA1(“OEUyM0MtQUQzNi00Q0M4L&”,
authorization_string):

xTAwVGGUGjT1ViJH5EQtPKeRn50%3D

http://2frabbit.com

57

Submitting	Request

GET /login HTTP/1.1
Host: rabbit.com:443
Authorization: OAuth realm="https://rabbit.com/
login",
 oauth_callback="oob",
 oauth_consumer_key="QkNDREItQjNDRC00NkNGL",
 oauth_nonce="MTZBNDAtMTNBNy00MEQwL",
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp="1453030020",
 oauth_version=“1.0”,
 oauth_signature=
"xTAwVGGUGjT1ViJH5EQtPKeRn50%3D"

• Client	now	receives	a	temporary	request	token	and	key	

• Client	opens	a	browser	using	the	token	(no	key):	

• https://api.myservice.com/oauth/authenticate?
oauth_token=NDdDOTUtNzAxRC00MDIzL	

• User	authenticates	to	service,	authorizes	app	

• Services	displays	an	authorization	code	to	the	user		

• Client	creates	a	new	OAuth	request	(as	above),	including:	

• oauth_token	=	(request	token)	

• oauth_verifier	=	(authorization	code)	

• Uses	request	key	as	part	of	signing	key:	

• “<client	key>	&	<request	key>”
58

Permission	to	Ask:	Granted

https://api.myservice.com/oauth/authenticate?oauth_token=NDdDOTUtNzAxRC00MDIzL

• Client	(finally)	receives	access	token	and	key	

• Stores	these	securely	

• Discards	request	key	

• Future	requests	use	the	new	access	token	

• oauth_token	parameter	

• access	token	key	as	second	half		of	signing	key

59

Authorization	is	complete

• Request	parameters	may	be	added	to	authorization	string	

• UTF-8,	url-encoded,	sorted	in	with	rest	of	“oauth_"	vars	

• Request	signed:	

• Using	client	(consumer)	key	and	user	(access	token)	key

60

Future	Requests	are	Signed

GET&https%3A%2F%2Frabbit.com%2Flookup&
detail%3D3%26
oauth_consumer_key%3DQkNDREItQjNDRC00NkNGL%26
oauth_nonce%3DOUIwRDItMzhGMi00MzI4L%26
oauth_signature_method%3DHMAC-SHA1%26
oauth_timestamp%3D1452029056%26
oauth_token%3DNDdDOTUtNzAxRC00MDIzL%26
oauth_version%3D1.0%26
record%3Dcave

http://2frabbit.com

• Compromise	of	(token,	key)	pairs	grants	full	access	

• No	password	cracking	necessary	

• Suggestion:	

• Store	access	token	in	hashed	form	

• Application	sends	token	in	request	

• Server	applies	hash	to	token	

• Uses	hash	to	look	up	user,	then	verify	using	key	

• Account	compromise	now	limited	to	device	only

61

Server	Security

• Good:	

• Very	strong,	with	nonces,	timestamps,	and	signatures.	

• Client	stores	only	access	tokens	

• Once	authorized,	password	never	sent	

• Tokens	may	be	individually	revoked	by	the	end	user	

• Can	provide	integrity	controls	on	individual	requests.	

• Bad:	

• Quite	complicated,	can	be	difficult	to	understand.	

• Depends	on	remote	service	for	actual	authentication

62

Assessment:	OAuth	1

OAuth	Version	2

63

• Starts	as	OAuth	Web	Resources	Authorization	Protocol	

• Published	as	OAuth	2	in	2012	

• Simplified	in	many	ways	

• Made	more	complicated	in	others	

• Not	a	strictly	defined	protocol	

• More	of	a	framework	—	different	systems	may	build	/	expand

64

OAuth	2

• User	secrets	and	HMAC-SHA1	signing	from	OAuth	1	-	Gone!	

• Relies	on	transport	and	storage	security	

• TLS	to	protect	exchange	of	data	

• Also	local	(and	server)	storage	to	protect	tokens	

• Client	key	and	secret	remain	

• But	sent	in	clear	during	part	of	process

65

(almost)	No	More	Secrets

• Client	requests	authorization	from	Resource	Owner	

• Resource	owner	responds	with	a	Grant	

• Client	sends	Grant	to	Authorization	Server	

• Server	responds	with	an	Access	Token	

• Client	uses	Token	for	future	requests

66

Typical	Authorization	Flow

• Authorization	Code	Grant	—	closest	to	OAuth	1	

• Different	Authorizing	and	Resource	servers	

• Implicit	-	typically	aimed	at	browser	clients	

• Avoids	separate	grant,	returns	token	immediately	

• Resource	Owner	Password	Credentials		

• The	user’s	password	is	directly	exchanged	for	a	token	

• Client	Credentials	-	similar	to	Resource	Owner	

• Authenticates	client	itself	-	like	a	system-level	acct	

• Client	acts	as	the	resource	owner

67

Flow	Varies	by	Grant	Type

• A	user	is	already	logged	into	a	web	application	

• They	want	to	connect	that	account	to	GitHub	

• App	redirects	them	to	GitHub	to	get	authorization	token	

• Includes	web-app	URL	for	GitHub	to	send	token	to

68

Example	-	WebApp	to	GitHub

GET https://github.com/login/oauth/authorize?
client_id=oozZYMUdsEtt&
scope=repo&
redirect_uri=https://myapp.com/oauth/code&

• The	user	authenticates	to	GitHub	

• Using	GitHub’s	system,	2FA,	etc.	

• Authorizes	the	application	to	connect	to	their	account	

• GitHub	connects	to	the	callback	URI	and	provides	code

69

User	Authorizes	the	Application

https://myapp.com/oauth/code&code=KLSqKzkta1

• The	browser	is	already	authenticated	to	the	user’s	app	

• The	app	sends	code	back	to	GitHub	

• This	time,	including	the	app’s	client_id	and	secret

70

Application	Requests	Connection

POST https://github.com/login/oauth/accesstoken

client_id=oozZYMUdsEtt&
client_secret=TKgx1h7Kq0W&
code=KLSqKzkta1&
redirect_uri=https://myapp.com/oauth/newtoken

https://myapp.com/oauth/newtoken

• GitHub	validates	the	client_id	and	secret	

• Generates	an	access	token	and	adds	to	the	user’s	account	

• Connects	to	the	user’s	web	app,	providing	token

71

GitHub	Sends	Token	to	App

POST https://myapp.com/oauth/newtoken

{"access_token":"e85ecf8fc409714a3c28fbd205f856
7de0521e57", "scope":"repo,gist",
"token_type":"bearer"}

• Whenever	web	app	wants	to	access	user’s	account…	

• ….simply	send	request	to	GitHub	

• And	include	the	user’s	unique	access_token

72

Accounts	Are	Now	Linked

• Some	systems	have	expiration	times	on	tokens	

• So	they	provide	a	long-lived	“refresh	token”	as	well	

• Client	uses	access	token	for	normal	requests	

• When	access	token	expires	

• Use	refresh	token	to	get	new	one	

• Need	to	ensure	both	tokens	are	securely	stored	on	client

73

Refresh	Token

• Good:	

• Generalized	framework,	open	to	extension	and	changes	

• Can	provide	direct	authentication	

• Essentially,	a	standard	“universal	session	token”	format	

• Bad:	

• May	limit	Interoperability	with	other	systems	

• Does	not	include	timestamp,	nonce,	signatures	

• Tokens	are	universally	accepted	

• Must	be	carefully	protected

74

Assessment:	OAuth	2

Some	Other	Systems

75

• Fast	ID	Online	-	Universal	Second	Factor	

• Allows	website	to	directly	challenge	USB	or	NFC	key	

• Built	into	Chrome,	others	in	progress	

• Still	relies	on	“traditional”	password	or	other	authentication

76

FIDO	U2F

• User	enters	userid	and	password	on	remote	site	

• Site	validates	password,	and	sends	a	challenge	to	key	

• Application	ID	-	tied	to	remote	app	

• Handle	-	tied	to	user,	allows	more	than	one	ID	on	key	

• Browser	appends	data	URI	origin	-	helps	prevent	phishing	

• Key	locates	correct	identity,	using	{application,	handle}	pair	

• Key	combines	app	ID,	challenge,	and	a	counter,	into	message	

• Signs	message	with	private	key	stored	on	device	

• Browser	forwards	response	to	server	

• Server	verifies	signature	using	the	account’s	public	key

77

U2F	Overview

• Not	a	system	or	protocol,	but	a	format	for	signed	data	

• Consists	of	three	parts:	

• Header	—	defines	token	type	

• Claims	—	the	contents	of	the	token	

• Signature	—	a	cryptographic	signature	of	the	claims

78

JSON	Web	Token

• Structure	for	data	signed	with	shared	secret	

• Header	—	defines	token	type	

• Claims	—	the	contents	of	the	token	

• Signature	—	a	cryptographic	signature	of	the	claims

79

JSON	Web	Token

{"typ":"JWT",
"alg":"HS256"}

Header

{"user": "tim",
"is_wizard": true}

Claims

IVliVUihAm1B7ZIX2xk8FaMMlavQNPBbz7y33
vSItMg

Signature

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9

eyJ1c2VyIjoidGltIiwiaXNfd2l6YXJkIjp0c
nVlfQ==

HMAC-SHA256('secret',
'<header>.<claims>')

Token eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyIjoidGltIiwiaXNfd2
l6YXJkIjp0cnVlfQ==.IVliVUihAm1B7ZIX2xk8FaMMlavQNPBbz7y33vSItMg=

• Distributed	Authentication	/	Identity	system	

• Essentially,	user	has	an	account	associated	with	some	server	

• Then	can	use	that	account	to	sign	into	multiple	services	

• Was	vaguely	popular	for	a	while,	but	not	as	much	so	today	

• Most	recent	version	published	in	2014	

• OpenID	Connect	

• Layered	atop	OAuth	2	framework

80

OpenID

• Challenge-Response	Authentication	Method,	with	MD5	

• Frequently	seen	with	email	systems	(SMTP,	POP,	IMAP)	

• Server	sends	challenge	string	

• Client	responds	with	HMAC-MD5(password,	challenge)	

• Several	issues:	

• Server	may	require	a	plaintext	copy	of	password	

• A	sniffed	transaction	can	be	brute-forced	

• Attacker	may	respond	with	known	challenge	

• Find	response	in	list	of	pre-computed	passwords	

• System	is	now	basically	deprecated

81

CRAM-MD5

• Benefits:	

• Very	strong	(library	bugs	and	CA	attacks	notwithstanding)	

• Provides	additional	encryption	and	authentication	

• Drawbacks:	

• Need	to	retain	DB	of	large	public	keys	

• Client	needs	to	securely	store	and	manage	private	key	

• Need	to	authenticate	new	devices	before	key	exchange	

• Rarely	seen,	except	as	additional	device-binding	feature

82

X.509	and	Public	/	Private	Keys

Capability	Review

83

84

Common	Elements

System Password Signature Nonce Timestamp PKI Integrity

Password yes

Digest yes yes yes optional optional

NTLM yes yes yes yes

OAuth 1 n/a yes yes yes optional yes

OAuth 2 optional

• Basic:	Simplicity	

• Digest:	Resistance	to	replay,	optional	request	integrity	

• NTLM:	Resistance	to	replay	

• OAuth	1:	Replay,	request	integrity,	revocable	tokens		

• OAuth	2:	Simplicity,	revocable	tokens

85

Strengths

• Basic:	Password	sent	over	wire.	

• Digest:	Potential	brute	force	attacks,	server-side	storage	
questions,	support	for	non-MD5	and	auth-int,	hash	use	

• NTLM:	Complex,	binary.	Issues	with	hash,	esp.	NTLMv1.	
Not	often	used	for	sessions.	Hash	use.	

• OAuth	1:	Complicated.	Can’t	do	direct	authentication.	

• OAuth	2:	No	replay	or	integrity	protection.	

86

Weaknesses

87

Security-Relevant	Features	

Attribute Password Digest NTLM OAuth 1 OAuth 2

Login sends
password

yes no no n/a optional

Client needs to
store password

yes yes yes no no

Password sent
during session

yes no no no no

Unlimited session
tokens

yes no no no yes

One-time session
tokens

no yes yes yes no

Request integrity
protections

no optional no yes no

• Logins:	None	are	ideal		

• Passwords	may	expose	credentials	on	wire	

• Digest	requires	weak	server-side	storage	

• NTLM	and	Digest	allow	use	of	un-cracked	hash	

• Sessions:	OAuth	1	

• Very	strong	

• Resistance	to	replays	and	request	tampering	

• Credentials	can	be	revoked	without	resetting	
password

88

My	Recommendation?	

Other	Considerations

89

• Server	performance	
• May	be	impacted	by	too	many	logins	w/too	strong	hash	

• But	how	big	a	percentage	of	load	is	that,	really?	

• Future	sever	flexibility	
• Migrating	to	different	hashes,	different	systems	

• Client	technical	capabilities	
• Security	of	device	token	storage		
• 66%	of	iOS	apps	I	surveyed	stored	tokens	insecurely	

• OAuth	isn’t	embedded	in	browsers	

• Do	NOT	try	to	implement	in	JavaScript

90

Other	Considerations

• Password	Reset	
• Still	the	weakest	link	

• Compromise	one	email	account,	get	everything?	

• SMS	not	necessarily	better	

• Attackers	have	chained	one	recovery	to	another…	

• Onboarding	
• Very	narrow	window	for	attacks	

• But	in	some	circumstances	may	be	a	viable	target

91

Other	Considerations

Response	Builder

92

• Need	to	understand	authentication	when	testing	apps	

• Common	systems	are	usually	easy	to	recognize	

• How	to	test	custom	(or	customized)	systems?	
• Need	to	understand	system	to	assess	risk	

• Replicating	responses	proves	(some)	understanding	

• Much	custom	coding	required	each	time	

• Building	a	simple	tool	to	help

93

Testing	Authentication

• Simplify	testing	of	known	and	custom	systems	

• Will	still	require	some	coding	
• Not	turn-key,	GUI,	fill-in-the-blanks	and	shoot	

• Helps	to	demonstrate	results	using	real	data	

• Extend	and	modify	in	response	to	need	

• Not	ready	today	(SORRY!)	

• Can	show	you	what	I’m	working	towards

94

Shortcuts

95

Common	Systems

% build_response --oauth1
Enter the parameters:
 Callback? oob
 Consumer Key? QkNDREItQjNDRC00NkNGL
 Consumer Secret? OEUyM0MtQUQzNi00Q0M4L
 Nonce? MTZBNDAtMTNBNy00MEQwL
 Signature Method? HMAC-SHA1
 Timestamp? 1453030020
 URL? https://rabbit.com/login
 Version? 1.0

Signature: xTAwVGGUGjT1ViJH5EQtPKeRn50%3D

96

Custom	Systems
prompt userid “Userid”
prompt password “Password”
prompt realm “Realm”
compute msg1 join(“:”, userid, password, realm)
compute ha1 md5(msg1)
prompt sn “Server Nonce”
prompt cn “Client Nonce”
prompt nc “Nonce Counter”
prompt qop “QOP”
prompt method “Method (GET)”
prompt path “Path”
compute msg2 join(“:”, method, path)
compute ha2 md5(msg2)
compute msg3 join(“:”,ha1,sn,nc,cn,qop,ha2)
compute result md5(msg2)

• Full-out	client	app	
• Can	connect	to	a	remote	server	

• Prompts	user	for	input	(userid,	password)	

• Makes	computation,	displaying	intermediate	results	

• Sends	result	to	server	

• Possible	fuzzing	of	parameters	

• Server	app	
• Similar	functionality,	but	pretending	to	be	a	server	

• see	also	httpbin.org

97

Possible	Enhancements

Conclusion

98

• Many	different	methods	for	authenticating	applications	

• Only	about	five	in	very	common	use	
• Basic,	Digest,	NTLM,	OAuth	1,	and	OAuth	2	

• All	have	strengths,	all	have	weaknesses	

• The	strongest	(OAuth	1)	largely	derided	as	“too	hard”	
• The	recommended	alternative	(OAuth	2)	is	very	weak

99

Conclusions

• Improvements	to	browsers	would	be	helpful	
• Improve	initial	login	security	

• Integrate	OAuth	1	or	similar	system	

• Direct	JavaScript	support	and	interfaces	

• New	developments	are	exciting	

• FIDO	U2F		

• Emphasis	on	two-factor	and	two-step	systems	

• Alternative	authentication	systems	(Digits)

100

Hope	For	The	Future

• Slides	will	be	available	online		

• White	paper		

• Additional	detail	and	better	explanations	

• Extensive	references	

• Test	and	demonstration	tool	

• Available	once	it’s	finished	

• Available	at	NCC	and	on	my	blog	

• https://www.nccgroup.trust/us/our-research/	

• https://darthnull.org/publications

101

References

Questions

102

• David	Schuetz	
• Senior	Security	Consultant	at	NCC	Group	

• david.schuetz@nccgroup.trust	

• @DarthNull

Locations

104

North	America Europe Australia
Atlanta
Austin
Chicago
New York
San Francisco
Seattle
Sunnyvale

Manchester - Head Office

Amsterdam
Basingstoke
Cambridge
Copenhagen
Cheltenham
Edinburgh
Glasgow
Leathered
Leeds
London
Luxembourg
Malmo
Milton Keynes
Munich
Vilnius
Wetherby
Zurich

Sydney

